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It is shown that nonlinear equations governing the dynamics of large amplitude nondispersive dust acoustic
waves admit nonstationary dust acoustic shock waves. Analytical and numerical results for the latter are
presented, and the relevance of our investigation to laboratory experiments is discussed.
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In their classic paper, Rao, Shukla, and Yu[1] predicted
linear and nonlinear properties of dust acoustic waves
(DAW’s) in an unmagnetized dusty plasma. The DAW’s are
low phase speed(in comparison with the electron and ion
thermal speeds) electrostatic oscillations supported by the
restoring force coming from the inertialess electron and ion
fluids, as well as the inertia of charged dust grains which are
a billion times heavier than ions. Thus the DAW’s appear on
a kinetic level, which have been visualized by the naked eye
in several laboratory experiments[2–7]. In radio-frequency
dusty plasma discharges, typical wave frequencies(wave-
lengths) are 10 Hz(half a centimeter) while the wave phase
speed is roughly 5 cm/s. Typical images of the DAW’s re-
veal that waves are of large amplitudes and their wave fronts
are steepened. Thus nonlinearity is in action. It has been
found that harmonic generation nonlinearity can give rise to
small amplitude acoustic dust acoustic solitary waves, which
are characterized by an inverted bell shaped potential distri-
bution, obeying a Korteweg–de Vries equation[2,8]. Arbi-
trary large amplitude dust acoustic solitary waves are shown
to exist in the steady state only[9,10].

In this Brief Report, we presentnonstationary solutionsof
fully nonlinear nondispersive DAW’s in an unmagnetized
dusty plasma. Since the phase speed of the DAW’s is much
smaller than the electron and ion thermal speeds, inertialess
electrons and ions are in thermal equilibrium in the dust
acoustic wave potentialf. Accordingly, we have for the elec-
tron and ion number densities, respectively,

nesfd = ne0 expsef/Ted, s1d

and

nisfd = ni0 exps− ef/Tid, s2d

wherene0 sni0d is the equilibrium electron(ion) number den-
sity, e is the magnitude of the electron charge, andTe sTid is
the electron(ion) temperature. At equilibrium, we haveni0
=ne0−eZdnd0, wherend0 is the unperturbed dust number den-
sity, Zd is the dust charge state, ande equals −1s+1d for
negatively(positively) charged dust grains.

The dynamics of dust grains is governed by
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where nd is the dust number density,vd is the dust fluid
velocity, andTd is the dust temperature.

The equations are closed by means of Poisson’s equation,

¹2f = 4pesne − ni − e Zdndd. s5d

In the following, we study nonstationary properties of
one-dimensional nondispersive fully nonlinear DAW’s. Thus,
from ne−ni −e Zdnd=0, we have

Nd = fa exps− twd − expswdg/sa − 1d, s6d

whereNd=nd/nd0, a=ni0/ne0, t=Te/Ti, andw=ef /Te.
By using Eq.(6) we can then write Eqs.(3) and (4) as

S ]

] t
+ u

]

] x
Dfa exps− twd − expswdg

+ fa exps− twd − expswdg
] u

] x
= 0, s7d

and

] u

] t
+ u

] u

] x
= − e

] w

] x
−

3Td

2ZdTesa − 1d2

]

] x

3fa exps− twd − expswdg2, s8d

whereu is the normalized[by Cd=sZdTe/mdd1/2] dust fluid
velocity along thex axis, the time and space are normalized
by the dust plasma periodvpd

−1 and the Debye radiusCd/vpd,
respectively, wherevpd=s4pZd

2e2nd0/mdd1/2 is the dust
plasma frequency. In most situations, the dust temperature
effect can be neglected due to the low dust temperatureTd
and large dust charge stateZd. In the following, we will
therefore neglect the last term in Eq.(8). Equations(7) and
(8) form a pair for investigating dust acoustic shock waves in
dusty plasmas.

Similar to acoustic waves in air[11] or ion acoustic waves
in plasmas [12], the nonlinear DA waves may develop
shocklike steepened profiles in due course of time. A special
class of solutions to Eqs.(7) and (8) are simple-wave solu-
tions, in which the creation of shock waves can be more
easily studied than in the original system. Carrying out thex
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and t differentiation in the first term of Eq.(7), we can re-
write Eqs.(7) and(8) in the matrix form[neglecting the last
term in Eq.(8)] as

]
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e u
G ]

] x
Fw

u
G = 0, s9d

where xswd=fa exps−twd−expswdg / fat exps−twd
+expswdg. The square matrix on the left-hand side of Eq.(9)
is diagonalized by means of a diagonalizing matrix consist-
ing of the eigenvectors to the matrix in Eq.(9). The two
eigenvalues to the matrix are

l± = u ± Î− exswd, s10d

and a diagonalizing matrix, where the columns are the eigen-
vectors, is

C = F 1 1

− Î− e/x Î− e/x
G . s11d

Carrying out the algebra, the system of equations(9) is di-
agonalized as
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wherec±=u7Fswd andFswd=e0
w f−e /xssdg1/2 ds. A simple-

wave solution is found by setting eitherc+ or c− to zero.
Setting c− to zero, we obtainu=−Fswd, c+=2u, and from
Eq. (12)
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wherel+swd=−Fswd+Î−exswd. Sinceu is a function ofw,
we also have an equation similar to Eq.(14) for w, i.e.,
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which describes the self-steepening of the potentialw. The
general solution of Eq.(15), before any shocks have devel-
oped, isw= f0fx−l+swdtg, wheref0 is a function of one vari-
able, given as an initial condition att=0. The effective phase
speedl+swd is a function of the solutionw, and similar to the
inviscid Burger’s equation, the general solution may there-
fore self-steepen and develop shocks after some time. After
shocks have developed, their details depend strongly on the
dispersive properties of the DA waves on small scale lengths,
but the shock fronts typically propagate with speeds accord-
ing to the Rankine-Hugoniot condition,vshock=fLswleftd
−Lswrightdg / swleft−wrightd, wherewleft andwright are the values
of w to the left and right of the shock, respectively, and the
flow function L is a primitive function ofl+swd.

Approximative solutions can be obtained in the small-
amplitude limit, viz.uwu ,tuwu!1. A first-order Taylor expan-
sion of l+swd with respect tow givesl+swd=c0−bw, where

the linear dust acoustic speed(normalized byCd) is c0
=Î−exs0d=Î−esa−1d / sta+1d and b=f−esat+1d / sa
−1dg1/2f1+as1+ad2/2s1+atd2g accounts for the first-order
nonlinear modification of the wave speed. Specifically, for
e=−1 and for negativew, the wave speed increases with
larger negative values ofw, giving rise to self-steepening and
shocks. When shock fronts have developed, the speed(nor-
malized to Cd) of the shock front isvshock=c0−bswleft
+wrightd /2. A Taylor expansion of Eq.(6) with respect tow
gives the small-amplitude relationw=s1−Nddsa−1d / sat
+1d, which may be used to express the effective wave and
shock speeds in terms of the dust densityNd. The result
is vph=l+swd=c0 h1+sNd−1df1+as1+ad2/2s1+atd2gj
<c0Nd if t@1 and vshock=c0h1+0.5sNd,left+Nd,right−2df1
+as1+ad2/2s1+atd2gj<c0sNd,left+Nd,rightd /2, which show
the nonlinear modification of the phase speed compared to
the linear phase speedc0. Since the phase speedvph is pro-
portional to the dust densityNd, shocks may be created be-
cause dust density maxima will travel faster than dust density
minima.

We now compare our theory with recent experiments(de-
scribed in connection with Figs. 4–6 in Ref.[6]), where it
was observed that large-amplitude waves,Nd=2.2, were as-
sociated with a ratiou/vph,0.5–0.8 between the maximum
particle particle(fluid) velocities and the phase speed of the
waves. Linear theory givesvph/u=Nd−1=1.2, which devi-
ates from the experimental results[6]. Hence we compare the
experimental values with our theory. Using the dust density
Nd=2.2, the theoretical ratio between the particle and phase
velocities, before shocks have developed, isu/vph=sNd

−1d /Nd<0.55, and the ratio between the particle velocity
and the speed of fully developed shock fronts isu/vshock
=2sNd−1d / sNd,left−Nd,rightd<0.75, where we usedNd,left

=2.2 andNd,right=1 (Nd,right is the unperturbed dust density in
front of the shock). The theoretical values are thus in excel-
lent agreement with the experimental ones.

In order to study the temporal development localized dust
acoustic shock waves and to compare them with experiments
[6], we have solved the simple-wave equation(15) numeri-
cally. We have chosen the parameters of the laboratory ex-
periment[6], where silicasSiO2d dust grains, with the diam-
eter<3 mm and mass 3.5310−14 kg, were used. Further, we
used the dust chargeZd=105, the electron temperatureTe
=2.5 eV , the dust number densitynd=109 m−1, t=100, and
a=1.1. For these parameters, we haveCd=1.1 m/s, vpd

−1

=1.1310−3 s, andCd/vpd=1.2310−3 m. Initially, the po-
tential was set to a localized pulse,w=−10−3 sechs0.1xd. The
results are displayed in dimensional units in Fig. 1. In order
to convert the dimensionless units to dimensional ones used
in the experiment, the spatial values were multiplied by 1.2
in order to obtain the position in millimeters, the time values
were multiplied by 1.1310−3 in order to obtain values in
seconds, and the velocity valuesu were multiplied by 1200
in order to obtain values in mm/s. The values of the potential
w were multiplied by 2.5 to convert them to V.

The initial pulse is the curve labeled(a) in Fig. 1, with its
negative potential(upper panel), dust velocity(middle panel)
and dust density(lower panel). We observe that the maxi-
mum density<2.2 (lower panel) is correlated with a fluid
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(particle) velocity of approximately 35 mm/s; see the middle
panel, which agrees relatively well with the values observed
in the experiment(see the discussion in connection with
Figs. 5 and 6 in Ref.[6]). We see a clear signature of self-
steepening of the DAW’s and the creation of shocks[curves
marked(d) in Fig. 1], which can also be seen in some of the

experiments of Ref.[6]. In Fig. 1, the maximum phase speed
of the wave can be calculated from the change of position
Dx<40 mm of the density maximum in curve(c) compared
to curve (a), divided by the timeDt=0.48 s, to bevph

<83 mm/s, i.e., somewhat more than twice the maximum
fluid velocity, shown in the middle panel(in the experiment
and in the low-amplitude approximation discussed above, the
phase velocity was somewhat less than twice the maximum
fluid velocity).

To summarize, we have considered the nonstationary
propagation of fully nonlinear nondispersive DAW’s in an
unmagnetized dusty plasma. We have employed Boltzmann
electron and ion distributions and the hydrodynamic equa-
tions for the dust fluid to derive a set of wave characteristic
equations which are then solved numerically. We have de-
rived simple nonlinear relations between the DAW density
amplitude and its phase and fluid velocities, which explain
observations in experiments that cannot be explained by a
linear theory. Our numerical results reveal dust acoustic
wave breaking and the formation of finite amplitude dust
acoustic shock waves due to nonlinear effects. Dust acoustic
shock waves seem to be observed in experiments[6].
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FIG. 1. The time evolution of the electrostatic potential(upper
panel), dust velocity(middle panel), and dust density(lower panel)
with a=1.1 andt=100, for (a) t=0 s, (b) t=0.24 s,(c) t=0.48 s,
and (d) t=0.73 s.
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